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Abstract: This study reports the analysis of concept maps dealing with 

―Mathematical Proof,‖ as generated by a group of student teachers. The researcher 

examined the type of concept map generated, the number of key terms utilized in the 

construction of the map, and the multiplicity of relationships indicated among those 

key terms/concepts. The conceptual understanding represented within the concept 

map was then mapped onto Balacheff‘s (1988) taxonomy of proofs. The lack of 

sophistication in the concept maps produced may point towards limitations in student 

teachers‘ understanding of mathematical proof. Since teacher‘s conceptions of proof 

inevitably influences both the role and nature of the instruction of mathematical proof 

within a mathematics classroom, limited knowledge in this core area of mathematics 

may typically prompts feelings of uncertainty and a lack of confidence when it comes 

to teaching this concept.  
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Introduction 

Assessment is defined as the process of gathering information so as to monitor 

student progress and make sound instructional decisions. However, it is not an easy 

task to assess student understanding of mathematical concepts. Mathematics 

educators have long used paper and pencil tests as tools to assess learning. 

However, the need for a better way to represent learners‘ conceptual understanding 

has led to the development of concept maps as an alternative assessment tool 

(Novak & Canas, 2006). Within the realm of mathematics education, some 

researchers (Schimittau, 2004; Afamasa-Fuatai, 2004a, 2004b) specifically advocate 

the use of concept maps to assess mathematical learning. 

 

A concept map is an explicit, graphical representation of knowledge. Concept maps 

can effectively map what is inside the mind to the outside (Tergan, 1988) and reveal 

those conceptual understandings that are not generally identifiable by other 

assessment tools (Hasemann & Mansfield, 1995). They provide the student with a 

different mean of demonstrating understanding, and the assessor with an additional 

opportunity to witness how the student connects ideas and groups or organizes 
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information. In other words, concept maps effectively reveal the overall integrated 

knowledge of the learner.  

The theoretical foundation of concept mapping derives from Ausbel‘s theory of 

learning. This theory posits that meaningful learning takes place by assimilating 

new concepts into existing conceptual frameworks held by the learner (Ausbel, 

1963; 1968; Ausbel, Novak & Hanesian, 1978). Learners who are asked to draw a 

concept map must choose visual symbols and/or details to represent concepts and to 

clarify the nature and relationships among these concepts. Details and connections 

between concepts can be added in any order. Generally maps are drawn with 

concepts contained in oval shapes and words noted on the lines connecting 

concepts/shapes (see Figure 1). 

 

 
 (Source:  Rebich & Gautier, 2005, p. 358) 

 

 Figure 1.Concepts and Link in a Concept Map 

 

Mathematical Proof and School Curriculum 

―Mathematical proof‖ has been regarded as one of the most distinguishing 

characteristics of the discipline of mathematics since the nineteenth century (Davis 

& Hersh, 1981). Mathematician Michael Atiyah identifies proof as ―the glue that 

holds mathematics together‖ (as cited in Dunham, 1994, p. 15). Wu (1996) 

considers ―proof as the guts of mathematics‖ (p. 222) and reminds us that 

mathematics courses are where the students get their training in logical reasoning. 

He continues that it is through proofs that students learn how to ―distinguish 

between what is true and what only seems to be true‖ (p. 224). He also notes that 

―any one who wants to know what mathematics is about must therefore learn how to 

write down a proof or at least understand what a proof is‖ (p. 222). Hence, its role in 

school mathematics is quite significant. Despite its perceived importance, however, 

it tends to have little meaning for students. Knuth (1999, 2002a, 2002b) notes that, 
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in North American schools, because Euclidean geometry is the sole vehicle by 

which high school students are introduced to mathematical proof, students are rarely 

able to identify the objectives or functions of mathematical proof. Given this narrow 

application, it is not surprising that students come to perceive mathematical proof as 

a formal and meaningless exercise (Chazan, 1993; Coe & Ruthven, 1994; Healy & 

Hoyles, 2000; Hadas, Hershkowitz & Schwarz, 2000; Weber, 2001).  

 

After its elevation to a standard in the curriculum document Principles and 

standards for school mathematics (2000), published by the National Council of 

Teachers of Mathematics (NCTM), mathematical proof became one of the most 

talked about topics in mathematics education. NCTM (2000) reminds us that 

learning mathematics requires far more than simply solving exercises by working 

with symbols, performing desired calculations and doing some proofs. It is 

fundamentally about ―developing a mathematical view point‖, ―mathematical 

reasoning‖, ―communicating mathematically‖, ―making connections in 

mathematics‖, and building ―connections‖ with other disciplines and [among 

mathematical] experiences in mathematics. Since learning mathematics involves 

discovery, ―proof and reasoning‖ are powerful ways of developing insights, making 

connections, and communicating mathematically. NCTM also underlines the fact 

that being ―able to reason is essential to understanding‖ mathematics. (p. 56). This 

suggests that proficiency in mathematical proof and reasoning is an integral part of 

mathematics.  

 

The role of the teacher is critical in this aspect. As the NCTM emphasizes, 

―[s]tudents learn mathematics through the experiences that teacher provide‖ (2000, 

p. 16). NCTM underscores the fact that teaching shapes students‘ understanding of 

mathematics, their ability to use it to solve problems, and their confidence in and 

attitude towards mathematics. Many researchers have pointed out that teachers‘ 

knowledge and belief play a critical role in successfully enacting classroom 

practices (Fennema & Franke, 1992; Thompson, 1984).  

 

The teaching of mathematical proof places significant demands on the subject- 

matter knowledge and the pedagogical knowledge of secondary mathematics 

teachers (Jones, 1997). Several researchers (Knuth, 1999, 2002a, 2002b; Martin & 

Harel, 1989) have noted that many North American teachers, for various reasons, 

fail to rise to this challenge. According to Knuth, the US secondary school 

mathematics teachers who participated in his study had minimal knowledge about 

the role and function of mathematical proof within the mathematics classroom. 

Since the teacher‘s conceptions of proof inevitably influences both the role and 

nature of the instruction of mathematical proof within a mathematics classroom, 

limited knowledge in this aspect of mathematics instruction typically prompts 
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feelings of uncertainty and a lack of confidence when it comes to teaching the 

concept. This may explain to a large degree why mathematical proof are either 

ignored, or compartmentalized as a special topic within school mathematics 

curriculum. 

 

The Study 

Effective mathematics teachers understand and truly know the mathematics that they 

are teaching. Further more, they are flexible in their teaching practices as they draw 

on that knowledge appropriately and creatively as they instruct their students 

(Shulman, 1986, Ball & Bass, 2000). In other words, a strong content knowledge 

helps them to incorporate useful representations, unifying concepts, examples and 

counter examples for clarification and helpful analogies (Grouws & Shultz, 1996). 

 

NCTM (1991, 2000) considers that effective teaching requires the ability to 

understand what students know and need to learn and then challenge and support 

them to learn it well. This is infact a complex task. Hence teachers should have a 

profound understanding - deep, vast and thorough understanding of the mathematics 

involved (Ma, 1989). Knuth (2002a, 2002b) mentions that the teachers‘ 

understanding and confidence in mathematical proof influences both the role that 

s/he assigns to proof in her/his mathematics classrooms and her/his instructional 

approach in teaching. Jones (1997) notes that the teaching of mathematical proof 

places significant demands on both the subject matter and pedagogical knowledge 

of secondary mathematics teachers.  

 

Reform initiatives by several organizations such as NCTM, Mathematical 

Association of America (MAA), National Research Council (NRC) have called for 

a new vision in teaching and learning mathematics. Hence, as Capraro et al. (2005) 

noted, these initiatives have led teacher preparation institutions to provide the 

foundation that enables neophyte instructors to grow into effective teachers. Hence, 

within the current context of reform, it becomes critical to know more about the 

student teachers‘ understanding of mathematical proof. 

 

Several researchers (Ball & Wilson, 1990; Fuller, 1997; Ma, 1999; NRC, 2001) 

have indicated that teachers with extensive subject matter knowledge will be able to 

build on students‘ prior knowledge and will confidently promote student thinking 

and reasoning in the classroom. Hence, I conducted a study to assess the degree to 

which pre-service teachers feel confident about instructing mathematical proof. I 

took a case study approach in this research, collecting written response and 

interview data. The study involved two phases: Phase 1: Participants‘ responses to 

word based, mathematical and representational tasks; and, Phase 2: Interview of 

selected candidates. Jones (1997) had grounded his study in the belief that 
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confidence level in the subject matter depends upon the subject matter knowledge of 

the teacher. Hence, based on Jones (1997, 2000), Fuller (1997), Even (1993), 

Fennema & Franke (1992), I associated high levels of confidence with high levels 

of conceptual understanding and, conversely, low levels of confidence with low 

levels of conceptual understanding. This article reports my analysis of the 

representational task—the concept map. I established two primary indicators for 

high-level understanding: first, the form and structure of the concept map produced, 

specifically in terms of three key features—the different forms of the maps, the 

number of key terms used in the maps, and the number of specified relationships 

among key terms and the cross-links indicated; and, second, the manner in which 

the construction of the map reflected a hierarchy of ‗proving‘ as established by 

Balacheff (1988). His four types of proofs are 1) naïve empiricism in which the 

truth of a result is verified with a few examples; 2) crucial experiment in which a 

result is verified on a particular case which is recognized as typical; 3) generic 

example in which the truth of assertion is made explicit using a prototypical case; 

and 4) thought experiment in which operations and foundational relations of the 

proof are dissociated from the specific examples considered (in this case, the proofs 

are based on the use of and transformation of formalized symbolic expressions). 

The conceptual understanding displayed by means of the concept map was later 

mapped onto Balacheff‘s (1988) taxonomy of proofs. 

 

17 pre-service teachers who participated in the study were completing the final 

semester of their teacher education program at a large Canadian university when 

this study was conducted. Data collection took place two weeks prior to the start of 

the final practicum (classroom teaching experience). All participants were 

Mathematics majors who had completed at least twelve 3-credit courses in math. 

The teacher education program at this University consists of a five-year combined 

degree. Students are required to take at least twelve 3-credit courses in their subject 

of major. Students with a Bachelors‘ degree, were able to enter into an ―after-

degree‖ program typically consisting of two years of additional study in Education. 

The study was conducted with the approval of University Ethics Committee.  

 

Numerous studies related to mathematical proof undertaken with participants at 

different levels of schooling and from different perspectives, have been reported in 

the literature. Studies extend from the university –level perspective of students and 

teachers (Raman, 2003; Housman & Porter, 2003) to the secondary level point view 

of students and teachers (Balacheff, 1988; Healy & Hoyles, 2000; Knuth, 2002a, 

2002b) to the perspective elementary –level student teachers (Martin & Harel, 

1989). Most of the studies make use of traditional assessment tools like paper & 

pencil and interviews, with the exception of Jones (1997) who studied secondary-

level student teachers‘ conceptions of mathematical proof with concept maps. With 
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this article, I aim to contribute to reducing that gap in the literature. In this article I 

focus on student teachers‘ understanding in mathematical proof displayed through 

concept maps. 

 

The Method 

Noting that the limited subject knowledge of both pre-service and in-service 

mathematics teachers is a matter of concern, Jones (1997) undertook a small-scale 

investigation of United Kingdom pre-service secondary school mathematics 

teachers and the ways in which they conceived of mathematical proof and proving. 

He wanted to know just how confident student teachers felt about the prospect of 

teaching mathematical proof. Jones invited the group of student teacher participants 

to brainstorm a list of key terms that they associated with the concept of 

mathematical proof. The students produced a list of 24 terms. Jones then asked each 

student teacher to create a concept map that represented his/her understanding of 

mathematical proof. Students were permitted to use any or all of the key terms 

previously brainstormed. Using a blank sheet of paper, participants arranged the 

terms as each saw fit, joining terms in what each perceived as a meaningful way. 

Then each student indicated the relationships among the key terms by drawing lines 

and/or writing descriptive words on the map. Jones analyzed student maps in terms 

of three criteria: the specific terms used, the frequency of terms used, and the nature 

of the relationship (if specified) between any two terms. According to Jones, the 

higher the student‘s Grade Point Average (GPA), the more terms the student was 

likely to use in constructing the map. Furthermore, the student teacher with the 

highest GPA produced the most sophisticated map: this student added terms that 

were not in the original list of 24. Jones concludes that the degree of confidence a 

student teacher experiences, and the likelihood of his/her future success in teaching 

mathematical proof, depends upon the construction of sound knowledge, both in 

terms of subject area and pedagogy 

 

Participants in Jones (1997) study generated the following list of 24 terms that they 

associated with the idea of ―mathematical proof.‖ The terms conclude are: (1) 

Euclidean, (2) Observation, (3) Logic, (4) General Case, (5) Trial and Improvement, 

(6) Theorem, (7) Graphical, (8) Assumptions, (9) Axioms, (10) Irrefutable, (11) 

Syllogism, (12) Deduction, (13) Definitive, (14) Implies, (15) Postulate, (16) 

Lemma, (17) By contradiction, (18) Explanation, (19) Hypothesis, (20) Examples, 

(21) Precision, (22) Proposition, (23) Reasoning, (24) Abstraction. I used the same 

list and gave these terms to my study group. The participants were then given 

sufficient time to construct a concept map of ―mathematical proof‖ using all, some, 

or none of the terms provided. They could also integrate any other term that they 

believed was relevant to ―mathematical proof‖. 
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The participants in my study, as previously noted, had already taken several 

university-level mathematics courses dealing with proofs and proving; therefore, it 

was logical to assume that they would recognize and understand most of the 

concepts/terms provided. The terms associated with mathematical proofs are 

universal, there was no reason to assume to that Canadian students would have 

difficulty with the terms generated by British students. Moreover, I decided to use 

Jones (1997) list because it would be easier to create a concept map with some 

familiar terms/concepts than having them generate concepts and then create a map. 

It was also probable that they had already developed mental models of 

‗mathematical proof‘ as a result of their previous exposure to ‗proof and proving‘ in 

various mathematics courses. Hence, they could easily utilize some of the 24 

terms/concepts presented to them. Rebich & Gautier (2005) noted that researchers 

in cognitive science have found that the knowledge learners posses is a very strong 

determinant of what information they attend to. They also noted that prior 

knowledge can be seen as the foundation for integration of new concepts. With this 

in mind, I thought that the list that I provide will act as scaffold that will help them 

integrate their ideas about the concept of proof. I did not think that providing 

student teachers will limit the flexibility and thinking of students as they were given 

the option of generating other terms, if they wish to.  

 

The study group had discussed concept maps in another compulsory course, in a 

fairly detailed manner, but in a non-mathematical context. Hence I did not 

discuss/explain the construction of concept maps as it might pertain to the context 

of mathematics before the study. 

 

Considerations Concerning Analysis 

There are a number of important considerations when one analyzes a concept map. 

First, there is no such thing as a single correct map; rather, there will be a multitude 

of possible ways in which one can generate a concept map, with some maps serving 

as more informative representations of conceptual understanding than others (for 

example, maps that display labels and/or connecting verbs that make relationships 

explicit, and relationships that are clearly appropriate, reflect considerable 

conceptual understanding). Next, one may analyze a concept map in terms of the 

absence of essential concepts and the appropriateness or inappropriateness of the 

relationships that have been made explicit by the mapmaker with labels or 

connecting verbs. Finally, one may analyze a concept map according to its general 

form.  

 

My analysis focuses mainly on the structure of the map, especially the degree of 

complexity indicated by the general form. Vanides et al. (2005) identify five typical 
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structures for concept maps: (1) Linear, (2) Circular, (3) Hub, (4) Tree and (5) 

Network. The College of Agricultural, Consumer, and Environmental Sciences 

(CACES, n.d), at the University of Illinois, also offers four general categories of 

concept maps: 1) Spider Maps, 2) Hierarchy Maps, 3) Flow Chart Maps, and 4) 

Systems. There is a slight difference between the two categorizations as the 

structures are based on the forms of maps identified in their respective studies. 

According to CACES, concept maps that have a central theme or unifying factor 

that has been placed in the center, and sub- themes radiating from it, can be called a 

―spider map‖. A ―Hub‖ map of Vanides et al (2005) classification can be considered 

almost equivalent to the ―spider map‖. The type of map that presents information in 

descending order of importance (from top to bottom) is a hierarchy map. A concept 

map that organizes the concepts in a linear format is called a ―flow chart‖ map. This 

map is similar to the ―linear‖ map identified by Vanides et al. And the map that 

organizes information in a similar flow-chart format with the addition of ―inputs‖ 

and ―outputs‖ can be termed a ―systems map‖. Classification systems are by no 

means definitive; nor are they exhaustive. A conceptual map will ultimately take 

whatever form best serves the cognitive needs of the individual constructing it—

hence, structure/form in concept maps is always variable. To identify the structures 

generated by the participants of my study, I will use the structures identified by both 

Vanides et al. and CACES for my analysis. In other words, I will use the 

categorization indentified either by Vanides et al. or CACES, depending on the 

structure identified in my study. 

 

More critical than the form of the map is the extent to which it illustrates complex 

conceptual relationships. One must analyze concept maps carefully in terms of how 

the key terms are used and the way in which relationships among them are specified 

(Jones, 1997). Concept maps that incorporate multiple ideas/concepts in ways that 

clarify conceptual relationships and cross-relationships (commonly referred to as 

network maps) demonstrate a sophisticated level of understanding (Jones, 1997; 

Vanides et al., 2005). Vanides et al. note that both proficient students and subject 

experts tend to create highly interconnected maps- maps that indicate relations and 

cross relations, while novices tend to create simple structures that are linear, 

circular, or organic. A network map that also includes important propositions that 

correctly describe the conceptual relationships that are foundational to the main 

ideas is evidence of high-level understanding, indeed. 

 

Data Analysis 

Three of the seventeen students did not attempt the task. Of the remaining fourteen 

students who did, none generated a high-level structure (that is, a complicated 

structure with extensive interconnectedness among concepts). Most of the maps 

were linear, organic, tree, systems, or spider-like structures (see Figure 2, 3, 4, and 5 
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as well as Table 1). In other words, all concept maps were simple and 

straightforward. For the most part, concepts were mapped within oval shapes and 

connected by lines; however, few students made these connections explicit by using 

arrows or labels. Only two students used propositions (verbs) to describe the 

relationships between the concepts.  

 

The task of generating a concept map to demonstrate conceptual understanding of 

―mathematical proof‖ proved to be quite a challenge for the student teachers that 

participated in this study. I noticed that most of these student teachers somehow 

tried, to fit into the maps, all of the terms/concepts that they were familiar with. In 

most cases, the student placed the word ―Proof‖ or ―Mathematical Proof‖ at the 

center of the concept map with other concepts branching out from it. This formation 

represents the easiest possible concept map to construct. 

Jones (1997) had used this concept map method to identify student teachers with 

more extensive subject knowledge of proof. He discovered that those teachers who 

had completed more mathematics courses and who had received higher grades were 

able to produce more sophisticated maps involving the use of a high number of key 

terms. I did notice that the student teacher who took the most mathematics courses 

and who referred to himself as a ―mathematics geek,‖ produced the most complex 

of all the concept maps. His map took the form of a tree with branches and sub-

branches. He utilized all 24 concepts from the list as well as five additional terms 

(see Figure 3). This is consistent with Jones‘ (1997) findings: those who excelled at 

mathematics also produced the most complicated maps of mathematical concepts. I 

found it especially interesting that none of the participants in my study produced 

maps showing interconnections among terms/concepts.  

 

Major Categories of Concept Maps 

The concept maps produced by the student teachers in my study fell into four major 

categories: 1) Linear Maps, 2) Tree Maps, 3) Systems Maps and 4) Spider Maps. A 

brief discussion of some of the exemplars of each of these different types of concept 

maps follows below. 

 

Linear Map 
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Figure 2. Linear Map 

  

Although the CACES (n.d) identifies this type of concept map as a ―Flow Chart,‖ I 

prefer to call it a linear map because this term more accurately describes the map‘s 

structure. As noted before, Vanides et al. (2005) also favour the term ―linear‖. 

 

Based on this linear concept map, it seems that the student begins by observing 

from a general case—in other words, a general observation or a conjecture—and 

then indicates that one must try another example. If the example works, one must 

provide an explanation for the result. If it does not work, one must try ―trial and 

improvement‖. The structure of this map suggests conceptual understanding that is 

in line with Balacheff‘s (1988) crucial experiment. At this level, one deals with the 

question of generalization by examining a case that is not very particular. If the 

assertion holds in the considered case, the student will argue that it is valid. In other 

words, at this level the thinker checks the statement with a carefully selected 

example that is representative of a certain class. 

 

This mapmaker did not include in the map either the term ―proof‖ or ―mathematical 

proof;‖ rather, s/he substituted the term ―explanation.‖ This may be because the 

words ―proof‖ and ―mathematical proof‖ were not included in the list of given 

terms. During the interview, when enquired about why the map maker had used the 

term ―explanation‖ instead of ―proof‖, s/he had no specific reason to it. The 

inclusion of the ―term‖ explanation may imply that this student teacher believes that 

explanation is one of the functions of mathematical proof. In school mathematics, 

one of the main purposes of introducing proof is to enhance understanding (Leddy, 

2001; Hanna, 1990). However, it is interesting to note that this mapmaker, when 

asked to explain what a proof is, s/he did not explain proof in terms of 

―explanation‖, but in terms of ―verification‖ and ―derivation‖. 

 

Tree Map 

The following concept map (Figure 3) is quite close in its form to a ―tree‖. This was 

the most complex concept map produced by a participant (As noted earlier, it was 

the work of the student who self-identified as a ―mathematical geek‖). Yet despite 

its relative complexity, the map lacks the verbs that would link concepts. This 

student teacher has laid out all of the different concepts very carefully. This concept 

map also illustrate has all of the characteristics of a hierarchical map, where general 

terms are placed closest to the word ―proof‖ and specific terms furthest away. 

Furthermore, all terms/concepts are appropriately placed within the map, suggesting 

that the student teacher has a holistic understanding of the concept. This holistic 

presentation of the concepts as well as the extensive detail of the map suggests that 
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this student‘s understanding of mathematical proof operates at the level of a thought 

experiment.  

 
Figure 3. Tree Map 

 

This observation is consistent in this student teacher‘s written task and also 

interview. As noted before, when students operate at the thought experiment level 

they are able to distance themselves from action and make logical deductions based 

upon an awareness of the properties and the relationships. It is at this, the fourth and 

the highest level in Balacheff‘s hierarchy of proof that students move from practical 

to intellectual proofs. Balacheff (1988) called this level ‗conceptual justification‘. 

At this level, actions are internalized and dissociated from the specific examples 

considered. The justification is based on the use of and transformation of formalized 

symbolic expressions. 

 

 

Systems Map 

The following concept map (Figure 4) takes the form of ―Systems Map‖. The inputs 

are ―Hypothesis‖, ―Trial and Improvement‖ and ―Theorem‖ and the Output is 

―irrefutable proof.‖ The message conveyed by this concept map can be paraphrased 

as follows: Based on the ―hypothesis‖ and using ―trial and error‖ (or examples) a 

theorem can be formulated. This theorem can be proved by using a ―Direct Method‖ 

or by using an ―Indirect Method‖. Whether one uses a ―direct method‖ or an 

―indirect method,‖ axioms, reasoning, and logic will play a major role in the 
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―proving‖ or the ―disproving‖. The concept map provides one major insight into this 

student teacher‘s conception of mathematical proof: s/he believes that once a 

theorem is proved, it is irrefutable. The belief that once a theorem is proved, it is 

irrefutable suggests an absolutist philosophy of mathematics (Ernest, 1990). Even 

though far fewer concepts are evident in this map than in the more sophisticated 

‗tree‘ map, the concepts are deliberately placed 

 

The input section includes the phrase ―trial and error‖ (that is, trying out various 

examples); but the student teacher also includes the words ―general case‖, which is 

not quite relevant in the set of concepts s/he used. From the rest of the concepts 

used in the map, it can be seen that the student teacher know the steps involved in 

―proving‖. Research indicates that the greater the number of terms in the map and 

the interconnectedness between them, the deeper the conceptual understanding of 

the mapmaker.  

 

 
 

Figure 4. Systems Map 

 

Spider Maps  

The most popular format for constructing a concept map proved to be the ―spider 

maps‖. Here, the mapmaker placed the central theme or unifying factor in the center 
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of the map and then organized related items around the center (see Figure 5). In my 

view, this sort of mapping does not require high-level cognition. Any number of 

terms/concepts can be placed around a main concept in no time at all. Vanides et al., 

(2005) consider ―Linear Maps‖ (Figure 2) to be the most simple of all the different 

forms of concept maps; however, some level of thinking is essential even at this 

level of mapping since the mapmaker needs to determine where to place each 

concept within a linear relationship. In constructing a ―spider map‖, a student places 

any number of concepts around a given term. Relationships need not be as carefully 

considered as they are when constructing even a simple linear map. ―Spider maps‖, 

clearly, do not require the level of thinking that is needed when constructing ―linear 

maps‖. It would be safe, then, to align the level of understanding of mathematical 

proof as displayed within this concept map with one of the lowest levels in 

Balacheff‘s (1988) hierarchy of proofs.  

Having said that, however, I do include one example of a spider map in which it 

seems apparent that the mapmaker gave some thought to the relationships among 

the items in the circle (see Figure 6). As would be expected with a spider map 

structure, the central concept, ―proof‖, has been placed in the center of the map with 

related terms around it in a circle. The mapmaker uses various linking verbs to 

connect the terms/concepts that s/he has selected. Unlike other examples of the 

spider map structure, however, here the mapmaker employs a clockwise direction to 

assist in explaining what a proof is. I infer his/her thinking process from the concept 

map as follows: Proof always starts off with ―hypothesis/ abstraction/ assumption, 

proposition‖. Proof is accomplished by ―logic‖; it uses ―theorems‖, ―axioms‖, 

―examples‖ and ―reasoning‖. Proofs can be proved either by ―deduction‖ or by 

―contradiction‖. Proofs require ―precision‖. A process that could be used to improve 

―proof‖ is ―trial and error‖. Proofs can be learned by ―observation‖. Proofs should 

apply to the ―general case‖ and should be ―definitive‖. ―Nice‖ proofs are obtained 

by ―Euclidean‖ and ―graphical‖ methods. Proofs end with ―postulates‖ and 

―explanation‖. This example demonstrates that even with a relatively simple solar 

system form, a mapmaker can generate a sophisticated map as long as he/she 

possesses a deep understanding of the concept. I suggest that this mapmaker 

displays good understanding of the processes involved in proving. However, when 

it came to actually proving the tasks, I noticed that this particular student did not 

display his/her proficiency. Only two student teachers used linking terms to connect 

the main concepts with the others. For example, Figure 6 is one of them. 
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Figure 5. Spider Map 

 

 

Figure 6. Another Example of a Spider Map 
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General Comments 

The table given below (Table 1) provides a summary of the different forms of 

concept maps generated by the students as well as the number of key terms used and 

the relationships specified. It can easily be seen that among the different styles of 

maps generated, the ―spider map‖ was the most popular. I believe that this was 

because this format best accommodated all of the given terms. As noted earlier, 

only two student teachers used verbs to specify the relationships.  
 

Table 1 

Observations from Concept Maps 
Name Form/ 

Shape of 

the Map 

# of key terms 

used 

Specific 

Relationship 

shown 

(Yes/No) 

# of cross 

links 

between 

concepts 

Terms outside 

the list used 

A Spider 19 No 0 Proof 

B Tree 21 Yes (by 

arrow) 

0 Proof 

C - - - - - 

D Spider 19 No 0 Proof 

E Spider 

 

11 No 0 Proof, prior 

knowledge 

patterns & 

relations 

puzzle put 

together 

F Not 

Identifiable 

19 Once 0 Proof 

G Linear 19 Yes 

(arrows) 

0 Problem, 

grouping, 

theory, special 

case 

H Linear 7 Yes 

(arrows) 

0 - 

I Tree 13 No 0 Proof 

J Spider 11 Yes (verbs) 0 Proof 

K 

 

 

 

Tree 29 0 0 Proof, specific 

cases, 

negative 

examples, 

plan, induction 

L Systems 17 Yes 

(arrows) 

0 Proof 

M Not 

Identifiable 

10 Yes (verbs) 0 - 
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N Spider 24 - 0 Proof 

O - - - - - 

P Systems 8 -  - 

Q - - - - - 

 

Of the terms added by the mapmakers (that is, terms that were not included in the 

original list of 24), the most common was ―proof‖ or ―mathematical proof‖, which 

is quite understandable. Most of the student teachers failed to use a high number of 

the original 24 terms in any logical manner. Those who used most of the 24 terms 

had opted for the ―spider‖ format, which, by virtue of its visual design, easily 

accommodates quite a number of terms. If one uses this criteria—a high number of 

terms used in a deliberate and logical way— as an indication of high confidence 

levels in understanding and teaching mathematical proof, then this group cannot be 

categorized as a group of student teachers who are confident in their understanding 

of and future teaching of ―mathematical proof‖. Using Balacheff‘s (1988) 

terminology, most of the student teachers in this group operated at a pragmatic 

justification level. The category of pragmatic justifications includes the first three 

levels in Balacheff‘s proof scheme: naïve empiricism, the crucial experiment and 

the generic example. Due to their exposure to different mathematical courses and 

their familiarity with most of the given terms, this one could notice traces of thought 

experiments in all of their proofs.  

 

Conclusion 

In at least one of the compulsory education courses in their program of studies, 

these pre-service teachers had been introduced and discussed fairly in detail about 

concept maps. Yet, when asked to generate maps in relation to mathematics, they 

had difficulty generating sophisticated representations of learning; that is, they 

could not effectively incorporate the different ideas and concepts that they had 

learned about ―proofs and proving‖ (the terms provided) into sophisticated visual 

representations of their mathematical understanding.  

 

 The written mathematical tasks that I administered along with this concept map 

task indicated that many of the student teachers had difficulty with secondary-

school level mathematical proof concepts. If the concept maps that these students 

generated are to be taken as triangulating information to students‘ level of thinking 

as it pertains to mathematical proof, then the implications are quite serious. As 

noted earlier, current reform in mathematics education and curriculum calls for an 

increased emphasis on ―reasoning and proof‖ as key stepping-stones towards a 

better understanding of mathematics. The high school student‘s understanding of 

mathematics, and his/her ability to solve problems and develop logical reasoning 

and justification skills, are shaped by the teaching that s/he encounters in schools 
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(NCTM, 2000). Hence, teachers themselves should have a healthy understanding of 

mathematical proof. Galbraith (1982) expressed concern about the quality of an 

educational system in which students who fail to master essential mathematical 

concepts later return to the system as mathematics teachers. He referred to this as a 

―recycling effect‖ when teachers, who lack fundamental skills, fail to teach students 

those skills, and those students, becoming teachers themselves, then perpetuate the 

process. A ―recycling effect‖ seems very likely if student teachers who demonstrate 

an inadequate understanding of mathematical proof and reasoning later return to the 

educational system as mathematics teachers faced with the specific challenge of 

teaching proof.  

Wu (1997) notes that, student difficulty with mathematical proof warrants a re-

examination of students‘ university-level mathematics courses. He suggests that the 

undergraduate mathematics education is built on ―Intellectual –Trickle Down 

Theory‖ (p. 5). Professors direct their teaching towards the best students while 

believing that, somehow, the rest will take care of themselves. He also notes another 

aspect of undergraduate mathematics education, what he calls ―delayed 

gratification‖ (p. 4), where the instructors believe that if students don‘t understand 

something in a particular course now, they will surely come to understand it when 

they do their graduate study or when they begin research. However, in reality only 

20% or less of the math graduates continue with graduate work. For the vast 

majority of undergraduates, these courses are the ―grand finale of their 

mathematical experience‖ (p. 4). Those who opt to become secondary mathematics 

teachers will be among this vast majority of students who were fed ―technicality 

after technicality‖ in their mathematics courses, and did not understand most of the 

material that was taught. A Nation at Risk, document published by US Department 

of Education in 1983, indicates that too many teachers are drawn from the bottom 

quarter of those students who graduate from university/college. Wu insists that the 

―technical inadequacy of mathematics teachers‖ (p. 8) is a serious problem, and that 

it is high time that mathematicians and mathematics educators sit together and 

design ―elementary mathematics courses with an advanced point of view‖. Jones 

(2000) has expressed a similar concern about student teachers‘ lack of subject 

content knowledge. My study points towards a need for further research in this area. 

Further in-depth studies of student teachers‘ understanding of mathematical content 

areas other than ―mathematical proof‖ are necessary if teacher education programs 

are to become more effective at educating future mathematics teachers.  
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